Суббота
18.05.2024
20:26
Поиск
Форма входа
Категории раздела
ТОЭ [45]
Теоретические основы электротехники.
GooGLe
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0




статистика Яндекс.Метрика

Язык жестов

Каталог статей

Главная » Статьи » Обучение » ТОЭ

Лекция N 23. Резонансные явления в цепях несинусоидального тока.

В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для  к-й гармоники вещественно.

Пусть имеет место цепь на рис. 1,а, питающаяся от источника несинусоидальной ЭДС,  в которой емкость конденсатора может плавно изменяться от нуля до бесконечности.

Для к-й гармоники тока можно записать

 ,

где   - действующее значение к-й гармоники ЭДС.

Таким образом, при изменении С величина к-й гармоники тока будет изменяться от нуля при С=0 до   при  , достигая максимума   при резонансе (см. рис. 1,б), определяемом величиной емкости

 .

Следует отметить, что, несмотря на то, что обычно с ростом порядка гармонической ЭДС ее амплитуда уменьшается, в режиме резонанса для к-й гармонической ее значение  может превышать величину первой гармоники тока.

Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю.

Для подавления р-й гармоники в режим резонанса токов настраивается контур  :

 .

Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений:

 ,

откуда при известных   и 

 .

Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров.

 

Особенности протекания несинусоидальных токов
через пассивные элементы цепи

1. Резистор.

При   ток через резистор (см. рис. 3)

 ,

где  .

Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте.

2. Конденсатор.

Пусть напряжение на конденсаторе (рис. 4) описывается гармоническим рядом  .

Коэффициент искажения кривой напряжения

 . (1)

 

Ток через конденсатор

 .

Тогда соответствующий кривой тока коэффициент искажения

 .(2)

Сравнение (1) и (2) показывает, что  , т.е. конденсатор искажает форму кривой тока по сравнению с напряжением, являясь сглаживающим элементом для последнего.

 


  

Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока.

3. Катушка индуктивности.

Принимая во внимание соотношение между напряжением и током для катушки индуктивности (рис. 6)

совершенно аналогично можно показать, что в случае индуктивного элемента  , т.е. кривая напряжения искажена больше, чем кривая тока. Этому случаю будет соответствовать рис. 5 при взаимной замене на нем кривых напряжения и тока. Таким образом, катушка индуктивности является сглаживающим элементом для тока.

С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели.

 

Высшие гармоники в трехфазных цепях

Напряжения трехфазных источников энергии часто бывают существенно несинусоидальными (строго говоря, они несинусоидальны всегда). При этом напряжения на фазах В и С повторяют несинусоидальную кривую   напряжения на фазе А со сдвигом на треть периода Т основной гармоники:

 .

Пусть для фазы А к-я гармоника напряжения

 .

Тогда с учетом, что  , для к-х гармонических напряжений фаз В и С соответственно можно записать:

Всю совокупность гармоник к от 0 до   можно распределить по трем группам:

1.   - гармоники данной группы образуют симметричные системы напряжений, последовательность которых соответствует последовательности фаз первой гармоники, т.е. они образуют симметричные системы напряжений прямой последовательности.

Действительно,

и

 .

2.  . Для этих гармоник имеют место соотношения:

т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности.

3.  . Для этих гармоник справедливо

Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности.

Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.

1. Если фазы генератора соединены в треугольник, то при несинусоидальных фазных ЭДС сумма ЭДС, действующих в контуре (см. рис. 7) не равна нулю, а определяется гармониками, кратными трем. Эти гармоники вызывают в замкнутом треугольнике генератора ток, даже когда его внешняя цепь разомкнута:

 ,

где  , а   - сопротивление фазы генератора для i-й гармоники, кратной трем.

2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:

 .

Таким образом, показание вольтметра в цепи на рис. 8

 .

3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем.

При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных.

При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора.

Таким образом, при соединении в треугольник напряжение генератора 

и ток

 .

В свою очередь при соединении в звезду

 .

4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:

 .

5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками

 .

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

  1. Какой характер: монотонный или колебательный – будет иметь зависимость действующего значения тока от величины индуктивности в цепи на рис. 1 при ее изменении от нуля до бесконечности?
  2. Почему на практике сигнал, пропорциональный току, получают с использованием резистивных шунтов?
  3. Какие гармоники и почему определяют характерные особенности режимов работы трехфазных цепей?
  4. Какие гармоники отсутствуют в линейных напряжениях и токах?
  5. Почему при несинусоидальных источниках питания, соединенных в треугольник, действующее значение фазной ЭДС может быть больше действующего значения фазного напряжения?
  6. При соединении трехфазного генератора и симметричной нагрузки по схеме «звезда-звезда» без нейтрального провода фазная ЭДС источника определяется выражением
  7. Определить действующие значения линейного напряжения, фазных напряжений генератора и приемника, а также напряжение смещения нейтрали.

    Ответ:  .

  8. В предыдущей задаче нейтральные точки генератора и приемника соединены проводом с нулевым сопротивлением.
  9. Определить ток в нейтральном проводе, если сопротивление фазы нагрузки         R=10 Ом.

    Ответ:  .

  10. При соединении трехфазного генератора и симметричной нагрузки по схеме «треугольник-треугольник» фазная ЭДС источника содержит первую и третью гармоники с амплитудами  . Сопротивление нагрузки для первой гармоники 
  11. Определить действующее значение линейного тока.

    Ответ:  .

Категория: ТОЭ | Добавил: HundKey (14.04.2011)
Просмотров: 1238 | Комментарии: 1 | Теги: Лекция N 23. Резонансные явления в , ТОЭ | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]